DeepMind’s New AI Can Predict Genetic Diseases
About 10 years ago, Žiga Avsec was a PhD physics student who found himself taking a crash course in genomics via a university module on machine learning. He was soon working in a lab that studied rare diseases, on a project aiming to pin down the exact genetic mutation that caused an unusual mitochondrial disease.
This was, Avsec says, a “needle in a haystack” problem. There were millions of potential culprits lurking in the genetic code—DNA mutations that could wreak havoc on a person’s biology. Of particular interest were so-called missense variants: single-letter changes to genetic code that result in a different amino acid being made within a protein. Amino acids are the building blocks of proteins, and proteins are the building blocks of everything else in the body, so even small changes can have large and far-reaching effects.
There are 71 million possible missense variants in the human genome, and the average person carries more than 9,000 of them. Most are harmless, but some have been implicated in genetic diseases such as sickle cell anemia and cystic fibrosis, as well as more complex conditions like type 2 diabetes, which may be caused by a combination of small genetic changes. Avsec started asking his colleagues: “How do we know which ones are actually dangerous?” The answer: “Well largely, we don’t.”