Skip to main content

Quantum device performs 2.6 billion years of computation in 4 minutes

posted onDecember 8, 2020
by l33tdawg
Arstechnica
Credit: Arstechnica

I am a great believer in solving problems with lasers. Are you suffering from a severely polarized society and a fast-growing population living below the poverty line? Well, I have the laser to solve all your problems.

OK, maybe not. But when it comes to quantum computing, I believe that lasers are the future. I suspect that the current architectures are akin to the Colossus or the ENIAC: they are breakthroughs in their own right, but they are not the future. My admittedly biased opinion is that the future is optical. A new paper provides my opinion some support, demonstrating solutions to a mind-boggling 1030 problem space using a quantum optical system. Unfortunately, the support is a little more limited than I'd like, as it is a rather limited breakthrough.

The researchers have demonstrated something called a Gaussian boson sampling system. This is essentially a device designed to solve a single type of problem. It's based on devices called "beam splitters," so let's start with a closer look at how those work.     If you shine light on a mirror that is 50 percent reflective, called a beam splitter, then half the light will be transmitted and half reflected. If the light intensity is low enough that only a single photon is present, it is either reflected or transmitted with the same randomness as a fair coin toss. This is the idea behind a beam splitter, which can take an incoming stream of photons from a laser beam and divide it into two beams traveling in different directions.

Source

Tags

Industry News

You May Also Like

Recent News

Friday, November 1st

Tuesday, July 9th

Wednesday, July 3rd

Friday, June 28th

Thursday, June 27th

Thursday, June 13th

Wednesday, June 12th

Tuesday, June 11th

Friday, June 7th

Thursday, June 6th