Researchers close the final loophole in device encryption with the power of nanotubes
Considering the size and semiconducting characteristics of carbon nanotubes, the prospect of using them to replace silicon is quite tempting. Unfortunately, there are a couple of known obstacles preventing that from being possible, at least for now. For those of us less scientifically informed, carbon nanotubes derive from random combinations of metallic and semiconducting nanotubes. As a result, when wiring up a processor, this makes the act of arranging them as needed an excessive engineering challenge.
But a team of researchers has leveraged the aforementioned obstructions to work in their favor. Instead of using carbon nanotubes to create a processor, the group discovered that they could produce cryptographic information by wiring up a section of a chip at random. This randomness lets the nanotubes serve as a means of on-chip, hardware-based encryption.