Google’s Neural Networks Invent Their Own Encryption
Computers are keeping secrets. A team from Google Brain, Google’s deep learning project, has shown that machines can learn how to protect their messages from prying eyes.
Researchers Martín Abadi and David Andersen demonstrate that neural networks, or “neural nets” – computing systems that are loosely based on artificial neurons – can work out how to use a simple encryption technique.
In their experiment, computers were able to make their own form of encryption using machine learning, without being taught specific cryptographic algorithms. The encryption was very basic, especially compared to our current human-designed systems. Even so, it is still an interesting step for neural nets, which the authors state “are generally not meant to be great at cryptography”. The Google Brain team started with three neural nets called Alice, Bob and Eve. Each system was trained to perfect its own role in the communication. Alice’s job was to send a secret message to Bob, Bob’s job was to decode the message that Alice sent, and Eve’s job was to attempt to eavesdrop.