Researchers one step closer to 'bootless' computer
Physicists at the University of California, Riverside have made a breakthrough in developing a "spin computer," which would combine logic with nonvolatile memory, bypassing the need for computers to boot up.
The new transistor technology, which one lead scientist believes could become a reality in about five years, would reduce power consumption to the point where eventually computers, mobile phones and other electronic devices could remain on all the time. The breakthrough came when scientists at UC Riverside successfully injected a spinning electron into a resistor material called graphene, which is essentially a very thin layer of graphite, just like you might find in a pencil. The graphene in this case is one atom thick.
The process is known as "tunneling spin injection." It involves laying down an electron in the graphene, which then represents a bit of data. By injecting multiple bits into the graphene, they can not only be stored in a nonvolatile state (without a need for electricity), but the data can be used for computations in the graphene itself.