Number of potentially habitable planets in our galaxy: Tens of billions
It is one thing to observe the periodic dimming of a star’s light, as NASA’s Kepler Space Telescope has done for thousands of planet “candidates” since its launch in 2009. However, to confirm that such dimmings are in fact due to a planet passing in front of a star, as opposed to any number of false positives such as a binary star companion, requires intensive follow-up work with ground-based instruments, most often a measurement of radial velocity to determine the object’s mass.
To ease this workload, planetary astronomers have devised a few different statistical techniques, but none have been fully automated until now. Princeton University researcher Timothy Morton has developed software that can, within a few minutes, asses the orbital period and other data gathered by Kepler to assign a statistical probability that planet “candidates” are, or are not, planets. When tested on previously confirmed exoplanets and false positives, the new technique worked almost flawlessly.